Spinal canal encroachment caused by axial loading for osteoporotic thoracolumbar vertebral fractures involving the posterior vertebral wall

Morphology of the injured posterior wall causing the instability

Tetsuo Hayashi, Takeshi Maeda, Eiji Mori, Tsuneaki Takao, Keiichiro Shiba

Department of orthopedic surgery,

Spinal Injuries Center, Fukuoka, Japan
In elderly patients with delayed neurological deficits following osteoporotic vertebral collapse, influence of loading would be involved in spinal canal encroachment (SCE), however, the details are not well understood.
Purpose

✓ To elucidate the effect of the fracture pattern at injured posterior wall on instability of posterior wall and SCE, using CT myelography in supine and semi-sitting position
Methods

- 36 cases
- Mean age: 77.3 ± 7.8 years (range: 62-91)
- Female/male: 30/6
- Osteoporosis
- Vertebral fractures that occurred without trauma or with only minor trauma.
- Burst type fracture
- Insufficient bone union of the posterior wall
Dynamic CTM

- Supine
- Semi-sitting
Radiological assessment

Rate of dural compression:

\[[1 - \frac{C}{(A+B)/2}] \times 100 \]

Ratio of occupation by bony fragments

\[\frac{D}{E} \times 100 \]

Posterior vertebral body height ratio:

\[\frac{H}{(F+G)/2} \times 100 \]
Subgroup
Morphology of fracture at the most compressed part

- Simple type: 19 cases
- Comminuted type: 17 cases

Bilateral side fracture
 2 lines
 Massive

Comminution or defect
 3 lines and more
 Comminuted
Significant correlations between collapse of posterior wall and protrusion of bony fragment were found at both groups.

*PVBHr: posterior vertebral body height ratio
OBFr: the ratio of occupation by bony fragments
Comparison between simple type and comminuted type

<table>
<thead>
<tr>
<th></th>
<th>Simple</th>
<th>Comminuted</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change of PVBHr(%)</td>
<td>4.8 ± 4.3</td>
<td>9.3 ± 6.1</td>
<td>0.01</td>
</tr>
<tr>
<td>Change of OBFr (%)</td>
<td>8.2 ± 6.8</td>
<td>14.0 ± 7.5</td>
<td>0.02</td>
</tr>
<tr>
<td>Change of DCr (%)</td>
<td>9.7 ± 9.7</td>
<td>19.4 ± 10.8</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*PVBHr: posterior vertebral body height ratio

OBFr: the ratio of occupation by bony fragments

DCr: dural compression ratio

Injured posterior vertebral wall with comminuted type would more likely to collapse and protrude into spinal canal with loading.

Comminuted type is more unstable.
Discussion

Simple type
- Supine
 - ✓ Less collapse
 - ✓ Less protrusion
 - Less instability
- Semi-sitting

Comminuted type
- Supine
 - ✓ More collapse
 - ✓ More protrusion
 - More instability
- Semi-sitting
Morphology of posterior wall affected the instability of the injured vertebrae

⇒ Morphology might affect palsy or bone fusion
Conclusion

✓ Collapse of the nonunited posterior vertebral wall and intracanal protrusion of vertebral fragments would occur simultaneously with axial loading, causing SCE.

✓ In cases with nonunion of the posterior wall with comminuted type, the development of severe canal encroachment is possible in a loading position.

✓ Morphology of the injured posterior wall is quite important to estimate the instability.

Disclosure

All authors have nothing to disclose.